To aid with the discussion, we will split this section into legal and ethical issues.
Legal issues
In practice the distinction between genetic and non-genetic data under the Human Research Act was not reflected in the answers given by interviewees. Instead, interviewees adopted a more contextual approach for determining when genetic or non-genetic data would be sensitive personal data. This approach confirms what the authors have written in previous studies regarding orthogonal risks to privacy from processing aggregate data [1, 2]. These orthogonal risks include circumstances where an attacker possesses other information that can be used to identify individual records or conduct inference attacks on aggregated data. These risks can be accentuated when dealing with genomic data, which can be used to identify individuals even more precisely [50]. Likewise, with big data and machine learning techniques proliferating in social sciences research, it can be difficult to determine whether research protocols fall within the scope of ethics committee purview [51]. Accordingly, data encrypted using advanced privacy technologies such as HE will not be anonymised where the entity holding that data possesses a method to decrypt it. This approach is analogous to the treatment of pseudonymised data and encryption keys under the GDPR [7]. When handed to a third party without the means to decrypt this data, the data will be anonymised data. However, depending on the data that has been released, there may be an orthogonal risk of singling out one or more records. Further, the fact that privacy and respect for persons were the most highly rated scores on our Likert scale indicates the importance of guaranteeing participant privacy to interviewees.
There are several strategies that could be used separately or in concert to resolve this problem and reduce the risk of reidentification. The first is to combine data discovery requests (and accompanying privacy enhancing technologies) with role-based access control. This would allow data custodians to certify the requesting clinician, researcher, or institution to determine that they had been approved access. Role based access control could also be used to prevent repeated requests that might be used to reidentify an individual. The second would be to adopt a more contextual approach for determining when data was encoded or anonymised beyond the distinction between genetic and non-genetic data under Swiss legislation [49]. For example, one group of interviewees mentioned that whole genome sequencing data would carry significantly less risks than germline or aggregate results about the number of single mutations. Another interviewee also mentioned that certain types of non-genetic data, such as inpatient and outpatient status, could be used to reidentify patients. This contextual based approach could be combined with role-based access control to decrease the risk of patients being reidentified. Likewise, as interviewees suggested, patients could be given more control to prevent the upload of potentially sensitive patient data. Finally, from an organisational perspective, an ethics review committee could establish a protocol for determining when the risk of reidentification is sufficient that a feasibility request is referred for ethics review. It should be noted that a mechanism for a ‘jurisdictional request’ already exists for an ethics committee to determine whether a particular project should undergo ethics approval [52]. A version of this ‘jurisdictional request’ could be made to a specialist in computer science or statistics to reassess the potential for reidentification.
Another important consideration raised by some interviewees was the status of the different entities responsible for processing. Three interviewees requested that we clarify who they were meant to be in the scenario prior to giving their answers. Their justification for this response was that the responsibilities for data custodians such as hospitals and requesting agencies such as universities and private research companies differ under data protection law. Specifically, data custodians should be treated as data controllers under the GDPR and FADP. However, the authors have previously assessed requesting institutes and companies as joint controllers who are equally responsible for compliance when using advanced privacy enhancing technologies [2]. Therefore, it is important that the contractual responsibilities of each processing entity are clarified prior to processing. One interviewee mentioned the BioMedIT Network, the output of another SPHN driver project. The purpose of BioMedIT is to create a platform for collaborative data analysis without compromising data privacy [53]. This interviewee mentioned that queries could be performed on data using the BioMedIT infrastructure. A BioMedIT Network node would be treated as a data processor under data protection law, rather than a controller, as the operators of this node are appointed to process data. However, all these details would need to be clarified in contractual terms between the entities responsible for processing data. In addition to clarifying the terms governing data processing, this contract would ensure an appropriate physical and organisational separation of encryption keys to prevent reidentification [2].
A final legal issue that needs to be clarified is the terms of general consent forms. As mentioned previously, several interviewees noted that there had been a proliferation of general consent forms. This problem is well recognised within the Swiss context, and studies have been dedicated to developing a nationwide integrated framework [54]. Therefore, interviewees were concerned that a general consent that was recognised and valid for one hospital would not be valid for another. Further, one interviewee mentioned that a general consent form should not only allow a patient to opt out of having their data encoded, but also having their data anonymised. This distinction is important; once a patient’s data is anonymised or aggregated, it cannot be traced back to them. Therefore, the patient loses the ability to exercise their rights with respect to their own data [55]. Another interviewee from a university hospital noted their institution had developed a general consent form that allowed opt outing of further use for both encoded and anonymised data. Although this consent form went beyond the legal requirements, it nevertheless offered the patient more control over their data compared to other general consent forms. Accordingly, amending existing ethics forms to offer patients more control over their data, even once it has been anonymised, could be an important strategy to guarantee social licence. This discussion dovetails into the ethical discussion of general consent forms below.
Ethical issues
General and specific consent forms are also relevant from an ethical perspective. One interviewee, who refused to give specific scores for the Likert scales, argued that general consent forms could be used strategically by researchers. The effect of this use would be to limit the liability or the ongoing responsibility of the research team, whilst maximising reuse of the data. Likewise, this interviewee believed that patients would see advanced privacy enhancing technologies as a method for researchers to reduce their ethical responsibilities. Although privacy enhancing technologies are primarily designed to reduce the risk of data breaches, patient trust and social licence are essential to reusing patient data for research purposes [56]. Accordingly, failing to ensure that advanced privacy enhancing technologies have sufficient public licence could undermine the willingness of patients to permit their data to be processed using these technologies. Another interviewee mentioned this public trust could be accentuated with a general consent form that would allow the patient to seek further information about the research projects their data is used for. This general consent form should highlight whether a patient’s data might be used for commercial research purposes. In the alternative, other researchers have focussed on the concept of meta consent. Holm and Ploug describe a meta consent model in which patients can specify their consent, data, and projects for which this data can be used. First, patients can specify whether they grant specific consent to a particular research project, or broad consent for multiple research projects. Secondly, patients can consent to different types of data being used for research purposes (including patient records and linked data). Thirdly, patients can consent to their data being used for non-commercial and commercial purposes [57]. Ploug and Holm have subsequently presented a proof-of-concept mobile application that can be used to record consent [58]. Accordingly, a similar approach should be adopted with the use of advanced privacy enhancing technologies and distributed ledger technologies. For privacy enhancing technologies, patients should have the option to indicate whether they would be willing to let their data be used for feasibility studies. The EU has recognised the need for a uniform consent model to encourage the secondary use of data, and accordingly the European Commission proposed a new Data Governance Act in 2020 [59]. This new act is discussed in further detail in the next section, which addresses European wide strategies for secondary uses of data.
Connected to ethical considerations regarding consent are questions of both practitioner and patient education. As mentioned previously, 5 experts contacted as interviewees refused on the grounds that they lacked knowledge about advanced privacy enhancing technologies or DLT. Therefore, both researchers and decision-making bodies, such as research ethics committees, should receive ongoing training about computational technologies and data driven research. This training would help researchers and decision-making bodies develop a consistent understanding of terms such as anonymisation and balance competing ethical considerations that might spring from its use [45, 60]. Similarly, one interviewee questioned whether a patient could give explicit and informed consent to having their data processed using this technology. However, as another interviewee explained, it might be difficult to explain homomorphic encryption and DLT to a patient in a fashion that was comprehensible. Accordingly, this interviewee suggested that, in addition for participants to find further information about their research, the general consent form should include a concise summary of these technologies. Further, the first interviewee above mentioned that ongoing publication education and awareness campaigns could be used to help encourage acceptance of advanced privacy enhancing technologies. One limitation of this paper is the focus on expert interviews, a point raised by many interviewee groups. Future studies could provide vignette scenarios to patients to examine how they would respond to these requests and in what circumstances they would accept their data being uploaded. Likewise, this paper focused on interviews with legal experts, who do not necessarily have subject matter expertise on advanced privacy enhancing technologies. Future studies could replicate these questions for computer scientists, biostatisticians and data scientists handling health data. However, these questions would need to be slightly modified to provide greater context for ethical and legal concepts, given that potential interviewees may not have subject matter expertise in these fields.
Applicability outside of Switzerland
One challenge that needs to be addressed with this project is the question of compatibility with both national and supranational legislation outside of Switzerland. Although the Human Research Act explicitly recognises the potential for general consent forms to be used for research, the lawfulness of general consent under the GDPR is unclear. Article 9(1) of the GDPR prima facie prohibits the processing of special categories of data, including health related and genetic data. However, Article 9(2)(a) overturns this prohibition if free, informed, and explicit consent is obtained from data subjects. Recital 33 of the GDPR provides that subjects should be able to give their consent to certain areas of scientific research. Implicitly, this Recital could support the need for general consent [61]. However, the former Article 29 Working Party subsequently held that Recital 33 cannot be used to dispense with the requirements for a well-defined research purpose. Instead, the goals of research can only be described in more general rather than specific terms [62]. Although not denying researchers the ability to rely on general consent under the GDPR, these guidelines significantly reduce the scope of broad consent. Nevertheless, Article 9(4) permits member states to impose further conditions on the processing of genetic and health-related data. Therefore, the boundaries for informed consent may very much depend on a case-by-case basis.
One development that may aid secondary uses of medical data across borders is the European Commission proposal for a Data Governance Act mentioned previously [59]. The purpose of this Act is to create a framework to encourage reuse of public sector data for commercial and ‘altruistic purposes’, including scientific research. The Data Governance Act does not mandate reuse of public sector data, such as data subject to intellectual property protections or highly confidential data. In this context, ‘public sector data’ includes both personal data as governed under the GDPR and non-personal data. However, Article 22 of the proposed Data Governance Act allows the European Commission to create implementing acts for a ‘European data altruism consent form’ to allow for uniform consent across the EU. This consent form must be modular so that it can be customised for different sectors and purposes. Further, data subjects must have the right to consent to and withdraw their data from being processed for specific purposes. The Data Governance Act has not yet entered into force, and the current draft could still undergo significant revisions. However, the Data Governance Act could act as a mechanism to standardise general consent between different EU member states, ameliorating the challenges with cross border transfers of data. The Data Governance Act could also act to empower data subjects so that they can exercise greater control over how their data is used for research [63].
With respect to erasure, and the GDPR’s right of erasure under Article 17, the drafters of the GDPR recommended that personal data be not stored in any blockchain ledger. If data must be stored in a DLT platform, that storage should be coupled with adequate access control mechanisms [64]. However, Article 17 paragraph 3 creates an exception for data collected for public health and safety purposes (paragraph 3(c)). In the alternative, the right to be forgotten cannot be exercised where personal data is archived for research or statistical processing, and erasure would render the purpose of research impossible (paragraph 3(d)). Although the interpretation of this exception is uncertain, it offers a relatively broad scope for researchers to continue to process data, despite erasure requests [55]. Nevertheless, it is important to not only consider the legal but also the ethical consequences of refusing erasure requests. Specifically, the decentralised ledger implementation used in MedCo allows links to locally stored data to be erased, thereby complying with GDPR erasure requests.